๐ค Intelligent Automation & Analytics¶
Advanced Task Automation with Smart Analytics
Sloth Runner provides intelligent automation features including predictive analytics, optimization algorithms, and adaptive workflows for modern infrastructure management.
๐ง Smart Automation Overview¶
The intelligent automation features in Sloth Runner help optimize your workflows through data-driven insights, predictive analytics, and adaptive execution patterns.
โจ Intelligent Features¶
๐ Predictive Analytics¶
- Performance Prediction: Analyze historical data to predict system performance
- Failure Detection: Early warning system for potential task failures
- Resource Optimization: Predict and optimize resource usage patterns
- Trend Analysis: Identify patterns in workflow execution and performance
๐ฏ Adaptive Optimization¶
- Dynamic Resource Allocation: Automatically adjust resources based on demand
- Intelligent Retry Strategies: Adaptive retry patterns based on failure types
- Load Balancing Optimization: Smart distribution of tasks across agents
- Performance Tuning: Automatic optimization of task execution parameters
๐ Self-Healing Workflows¶
- Automatic Recovery: Detect and recover from common failure scenarios
- Circuit Breaker Patterns: Prevent cascade failures with intelligent circuit breakers
- Health Monitoring: Continuous monitoring with automatic remediation
- Rollback Strategies: Intelligent rollback based on health metrics
๐ Learning & Adaptation¶
- Execution Pattern Learning: Learn from past executions to improve future runs
- Anomaly Detection: Identify unusual patterns in workflow execution
- Performance Baselines: Establish and monitor performance baselines
- Continuous Improvement: Automatically suggest workflow optimizations
๐ Getting Started with Intelligent Features¶
Enable Predictive Analytics¶
local analytics = require("analytics")
local optimization = require("optimization")
-- Enable predictive analytics for a workflow
workflow.define("intelligent_deployment", {
analytics_enabled = true,
optimization_level = "aggressive",
tasks = {
task("performance_analysis")
:command(function()
-- Analyze historical performance data
local prediction = analytics.predict_performance({
metric = "deployment_time",
lookback_days = 30,
confidence_threshold = 0.8
})
if prediction.expected_duration > 300 then
log.warn("Deployment expected to take " .. prediction.expected_duration .. " seconds")
analytics.alert("long_deployment_predicted", prediction)
end
return prediction
end)
:build(),
task("optimized_deployment")
:depends_on({"performance_analysis"})
:command(function(params, deps)
local prediction = deps.performance_analysis
-- Optimize deployment based on predictions
local strategy = optimization.recommend_strategy({
predicted_duration = prediction.expected_duration,
available_resources = system.get_resources(),
priority_level = params.priority or "normal"
})
return exec.run_optimized("kubectl apply -f production.yaml", strategy)
end)
:build()
}
})
Adaptive Resource Management¶
local adaptive = require("adaptive")
local monitoring = require("monitoring")
-- Self-adjusting resource allocation
local adaptive_pipeline = task("adaptive_processing")
:command(function(params, deps)
-- Monitor current system load
local system_load = monitoring.get_system_metrics()
-- Adapt execution strategy based on load
local strategy = adaptive.calculate_strategy({
cpu_usage = system_load.cpu_percent,
memory_usage = system_load.memory_percent,
network_load = system_load.network_throughput,
historical_data = analytics.get_historical_load(24) -- 24 hours
})
-- Execute with adaptive parameters
return exec.run_with_strategy("./heavy-processing-task.sh", {
parallelism = strategy.recommended_parallelism,
memory_limit = strategy.memory_allocation,
timeout = strategy.estimated_timeout,
retry_strategy = strategy.retry_config
})
end)
:build()
Intelligent Error Handling¶
local recovery = require("recovery")
local patterns = require("patterns")
-- Self-healing workflow with intelligent recovery
workflow.define("resilient_pipeline", {
error_recovery = "intelligent",
learning_enabled = true,
on_task_failure = function(task_name, error, context)
-- Analyze failure pattern
local failure_analysis = patterns.analyze_failure({
task = task_name,
error = error,
context = context,
historical_failures = analytics.get_failure_history(task_name, 90)
})
-- Determine recovery strategy
local recovery_plan = recovery.generate_plan(failure_analysis)
log.info("Failure detected in " .. task_name .. ": " .. error.message)
log.info("Recovery strategy: " .. recovery_plan.strategy)
if recovery_plan.auto_recoverable then
-- Attempt automatic recovery
local recovery_result = recovery.execute_plan(recovery_plan)
if recovery_result.success then
log.info("โ
Automatic recovery successful")
return "retry"
else
log.error("โ Automatic recovery failed: " .. recovery_result.error)
return "fail"
end
else
-- Manual intervention required
recovery.request_manual_intervention({
task = task_name,
error = error,
suggested_actions = recovery_plan.manual_steps
})
return "pause"
end
end,
tasks = {
task("database_migration")
:command("./migrate-database.sh")
:retry_strategy("intelligent")
:build(),
task("service_deployment")
:command("kubectl rollout deployment myapp")
:health_check(function()
return monitoring.check_service_health("myapp")
end)
:rollback_on_failure(true)
:build()
}
})
Performance Optimization¶
local optimizer = require("optimizer")
local profiler = require("profiler")
-- Continuous performance optimization
local optimization_task = task("performance_optimization")
:command(function(params, deps)
-- Profile current performance
local profile = profiler.analyze_workflow_performance({
workflow_id = params.workflow_id,
time_window = "7d",
metrics = {"execution_time", "resource_usage", "error_rate"}
})
-- Generate optimization recommendations
local recommendations = optimizer.analyze_performance(profile)
log.info("Performance Analysis Complete:")
log.info("Average execution time: " .. profile.avg_execution_time .. "s")
log.info("Resource efficiency: " .. profile.resource_efficiency .. "%")
log.info("Error rate: " .. profile.error_rate .. "%")
-- Apply optimizations if confidence is high
for _, rec in ipairs(recommendations) do
if rec.confidence > 0.8 and rec.impact == "high" then
log.info("Applying optimization: " .. rec.description)
optimizer.apply_optimization(rec)
else
log.info("Optimization suggestion: " .. rec.description .. " (confidence: " .. rec.confidence .. ")")
end
end
return {
optimizations_applied = #recommendations,
expected_improvement = optimizer.calculate_improvement(recommendations)
}
end)
:schedule("daily")
:build()
๐ Analytics Dashboard Integration¶
Real-time Analytics¶
local dashboard = require("dashboard")
local realtime = require("realtime")
-- Real-time analytics dashboard
dashboard.create_panel("workflow_intelligence", {
title = "Intelligent Workflow Analytics",
refresh_interval = "30s",
widgets = {
{
type = "prediction_chart",
title = "Performance Predictions",
data_source = function()
return analytics.get_predictions({
metrics = {"execution_time", "success_rate", "resource_usage"},
forecast_days = 7
})
end
},
{
type = "optimization_summary",
title = "Optimization Opportunities",
data_source = function()
return optimizer.get_opportunities({
priority = "high",
confidence_threshold = 0.7
})
end
},
{
type = "anomaly_detector",
title = "Detected Anomalies",
data_source = function()
return analytics.detect_anomalies({
time_window = "24h",
sensitivity = "medium"
})
end
}
}
})
๐ง Configuration Options¶
Analytics Configuration¶
# sloth-runner.yaml
analytics:
enabled: true
data_retention: "90d"
prediction_models:
- execution_time
- resource_usage
- failure_probability
optimization:
enabled: true
auto_apply_threshold: 0.8
learning_rate: 0.1
monitoring:
anomaly_detection: true
baseline_period: "30d"
alert_thresholds:
performance_degradation: 20%
error_rate_increase: 5%
๐ Benefits¶
Operational Benefits¶
- Reduced Downtime: Predictive analytics help prevent failures before they occur
- Improved Performance: Continuous optimization leads to better resource utilization
- Lower Costs: Efficient resource usage reduces infrastructure costs
- Better Reliability: Self-healing capabilities improve overall system reliability
Developer Benefits¶
- Less Maintenance: Intelligent automation reduces manual intervention
- Faster Debugging: Anomaly detection helps identify issues quickly
- Data-Driven Decisions: Analytics provide insights for infrastructure improvements
- Continuous Learning: System improves over time without manual tuning
๐ Next Steps¶
- Enable Analytics: Start by enabling basic analytics in your workflows
- Monitor Patterns: Observe workflow patterns and performance metrics
- Apply Optimizations: Implement recommended optimizations gradually
- Expand Coverage: Add analytics to more critical workflows
- Custom Models: Develop custom prediction models for specific use cases