Skip to content

๐Ÿค– Intelligent Automation & Analytics

Advanced Task Automation with Smart Analytics
Sloth Runner provides intelligent automation features including predictive analytics, optimization algorithms, and adaptive workflows for modern infrastructure management.

๐Ÿง  Smart Automation Overview

The intelligent automation features in Sloth Runner help optimize your workflows through data-driven insights, predictive analytics, and adaptive execution patterns.

โœจ Intelligent Features

๐Ÿ“Š Predictive Analytics

  • Performance Prediction: Analyze historical data to predict system performance
  • Failure Detection: Early warning system for potential task failures
  • Resource Optimization: Predict and optimize resource usage patterns
  • Trend Analysis: Identify patterns in workflow execution and performance

๐ŸŽฏ Adaptive Optimization

  • Dynamic Resource Allocation: Automatically adjust resources based on demand
  • Intelligent Retry Strategies: Adaptive retry patterns based on failure types
  • Load Balancing Optimization: Smart distribution of tasks across agents
  • Performance Tuning: Automatic optimization of task execution parameters

๐Ÿ”„ Self-Healing Workflows

  • Automatic Recovery: Detect and recover from common failure scenarios
  • Circuit Breaker Patterns: Prevent cascade failures with intelligent circuit breakers
  • Health Monitoring: Continuous monitoring with automatic remediation
  • Rollback Strategies: Intelligent rollback based on health metrics

๐Ÿ“ˆ Learning & Adaptation

  • Execution Pattern Learning: Learn from past executions to improve future runs
  • Anomaly Detection: Identify unusual patterns in workflow execution
  • Performance Baselines: Establish and monitor performance baselines
  • Continuous Improvement: Automatically suggest workflow optimizations

๐Ÿš€ Getting Started with Intelligent Features

Enable Predictive Analytics

local analytics = require("analytics")
local optimization = require("optimization")

-- Enable predictive analytics for a workflow
workflow.define("intelligent_deployment", {
    analytics_enabled = true,
    optimization_level = "aggressive",

    tasks = {
        task("performance_analysis")
            :command(function()
                -- Analyze historical performance data
                local prediction = analytics.predict_performance({
                    metric = "deployment_time",
                    lookback_days = 30,
                    confidence_threshold = 0.8
                })

                if prediction.expected_duration > 300 then
                    log.warn("Deployment expected to take " .. prediction.expected_duration .. " seconds")
                    analytics.alert("long_deployment_predicted", prediction)
                end

                return prediction
            end)
            :build(),

        task("optimized_deployment")
            :depends_on({"performance_analysis"})
            :command(function(params, deps)
                local prediction = deps.performance_analysis

                -- Optimize deployment based on predictions
                local strategy = optimization.recommend_strategy({
                    predicted_duration = prediction.expected_duration,
                    available_resources = system.get_resources(),
                    priority_level = params.priority or "normal"
                })

                return exec.run_optimized("kubectl apply -f production.yaml", strategy)
            end)
            :build()
    }
})

Adaptive Resource Management

local adaptive = require("adaptive")
local monitoring = require("monitoring")

-- Self-adjusting resource allocation
local adaptive_pipeline = task("adaptive_processing")
    :command(function(params, deps)
        -- Monitor current system load
        local system_load = monitoring.get_system_metrics()

        -- Adapt execution strategy based on load
        local strategy = adaptive.calculate_strategy({
            cpu_usage = system_load.cpu_percent,
            memory_usage = system_load.memory_percent,
            network_load = system_load.network_throughput,
            historical_data = analytics.get_historical_load(24) -- 24 hours
        })

        -- Execute with adaptive parameters
        return exec.run_with_strategy("./heavy-processing-task.sh", {
            parallelism = strategy.recommended_parallelism,
            memory_limit = strategy.memory_allocation,
            timeout = strategy.estimated_timeout,
            retry_strategy = strategy.retry_config
        })
    end)
    :build()

Intelligent Error Handling

local recovery = require("recovery")
local patterns = require("patterns")

-- Self-healing workflow with intelligent recovery
workflow.define("resilient_pipeline", {
    error_recovery = "intelligent",
    learning_enabled = true,

    on_task_failure = function(task_name, error, context)
        -- Analyze failure pattern
        local failure_analysis = patterns.analyze_failure({
            task = task_name,
            error = error,
            context = context,
            historical_failures = analytics.get_failure_history(task_name, 90)
        })

        -- Determine recovery strategy
        local recovery_plan = recovery.generate_plan(failure_analysis)

        log.info("Failure detected in " .. task_name .. ": " .. error.message)
        log.info("Recovery strategy: " .. recovery_plan.strategy)

        if recovery_plan.auto_recoverable then
            -- Attempt automatic recovery
            local recovery_result = recovery.execute_plan(recovery_plan)

            if recovery_result.success then
                log.info("โœ… Automatic recovery successful")
                return "retry"
            else
                log.error("โŒ Automatic recovery failed: " .. recovery_result.error)
                return "fail"
            end
        else
            -- Manual intervention required
            recovery.request_manual_intervention({
                task = task_name,
                error = error,
                suggested_actions = recovery_plan.manual_steps
            })
            return "pause"
        end
    end,

    tasks = {
        task("database_migration")
            :command("./migrate-database.sh")
            :retry_strategy("intelligent")
            :build(),

        task("service_deployment")
            :command("kubectl rollout deployment myapp")
            :health_check(function()
                return monitoring.check_service_health("myapp")
            end)
            :rollback_on_failure(true)
            :build()
    }
})

Performance Optimization

local optimizer = require("optimizer")
local profiler = require("profiler")

-- Continuous performance optimization
local optimization_task = task("performance_optimization")
    :command(function(params, deps)
        -- Profile current performance
        local profile = profiler.analyze_workflow_performance({
            workflow_id = params.workflow_id,
            time_window = "7d",
            metrics = {"execution_time", "resource_usage", "error_rate"}
        })

        -- Generate optimization recommendations
        local recommendations = optimizer.analyze_performance(profile)

        log.info("Performance Analysis Complete:")
        log.info("Average execution time: " .. profile.avg_execution_time .. "s")
        log.info("Resource efficiency: " .. profile.resource_efficiency .. "%")
        log.info("Error rate: " .. profile.error_rate .. "%")

        -- Apply optimizations if confidence is high
        for _, rec in ipairs(recommendations) do
            if rec.confidence > 0.8 and rec.impact == "high" then
                log.info("Applying optimization: " .. rec.description)
                optimizer.apply_optimization(rec)
            else
                log.info("Optimization suggestion: " .. rec.description .. " (confidence: " .. rec.confidence .. ")")
            end
        end

        return {
            optimizations_applied = #recommendations,
            expected_improvement = optimizer.calculate_improvement(recommendations)
        }
    end)
    :schedule("daily")
    :build()

๐Ÿ“Š Analytics Dashboard Integration

Real-time Analytics

local dashboard = require("dashboard")
local realtime = require("realtime")

-- Real-time analytics dashboard
dashboard.create_panel("workflow_intelligence", {
    title = "Intelligent Workflow Analytics",
    refresh_interval = "30s",

    widgets = {
        {
            type = "prediction_chart",
            title = "Performance Predictions",
            data_source = function()
                return analytics.get_predictions({
                    metrics = {"execution_time", "success_rate", "resource_usage"},
                    forecast_days = 7
                })
            end
        },

        {
            type = "optimization_summary",
            title = "Optimization Opportunities",
            data_source = function()
                return optimizer.get_opportunities({
                    priority = "high",
                    confidence_threshold = 0.7
                })
            end
        },

        {
            type = "anomaly_detector",
            title = "Detected Anomalies",
            data_source = function()
                return analytics.detect_anomalies({
                    time_window = "24h",
                    sensitivity = "medium"
                })
            end
        }
    }
})

๐Ÿ”ง Configuration Options

Analytics Configuration

# sloth-runner.yaml
analytics:
  enabled: true
  data_retention: "90d"
  prediction_models:
    - execution_time
    - resource_usage
    - failure_probability

optimization:
  enabled: true
  auto_apply_threshold: 0.8
  learning_rate: 0.1

monitoring:
  anomaly_detection: true
  baseline_period: "30d"
  alert_thresholds:
    performance_degradation: 20%
    error_rate_increase: 5%

๐Ÿ“ˆ Benefits

Operational Benefits

  • Reduced Downtime: Predictive analytics help prevent failures before they occur
  • Improved Performance: Continuous optimization leads to better resource utilization
  • Lower Costs: Efficient resource usage reduces infrastructure costs
  • Better Reliability: Self-healing capabilities improve overall system reliability

Developer Benefits

  • Less Maintenance: Intelligent automation reduces manual intervention
  • Faster Debugging: Anomaly detection helps identify issues quickly
  • Data-Driven Decisions: Analytics provide insights for infrastructure improvements
  • Continuous Learning: System improves over time without manual tuning

๐Ÿš€ Next Steps

  1. Enable Analytics: Start by enabling basic analytics in your workflows
  2. Monitor Patterns: Observe workflow patterns and performance metrics
  3. Apply Optimizations: Implement recommended optimizations gradually
  4. Expand Coverage: Add analytics to more critical workflows
  5. Custom Models: Develop custom prediction models for specific use cases